publications

In my research area of Software Engineering (SE), it is common to publish completed research in top-tier conferences as full-length, peer-reviewed papers (10-12 pages). The top SE conferences have very low acceptance rates (<30%) and a few are even considered more prestigious, having significantly more impact and citations, than most journals. The author's order is generally based on the contribution to the publication. In the case of PhD student projects, the convention is to have the PhD student as the first author, where I will be a corresponding author in the second or third author's order.

2023

  1. AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing Software Vulnerabilities
    Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki Kume, Van Nguyen, Dinh Phung, and John Grundy
    2023
  2. DeepLineDP: Towards a Deep Learning Approach for Line-Level Defect Prediction
    Chanathip Pornprasit, and Chakkrit Tantithamthavorn
    IEEE Trans. Software Eng., 2023
  3. GPT2SP: A Transformer-Based Agile Story Point Estimation Approach
    Michael Fu, and Chakkrit Tantithamthavorn
    IEEE Trans. Software Eng., 2023
  4. Deep Learning for Android Malware Defenses: A Systematic Literature Review
    Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu
    ACM Comput. Surv., 2023
  5. Explainable AI for SE: Challenges and Future Directions
    Chakkrit Tantithamthavorn, Jürgen Cito, Hadi Hemmati, and Satish Chandra
    IEEE Software, 2023
  6. Expert Perspectives on Explainability
    Jürgen Cito, Satish Chandra, Chakkrit Tantithamthavorn, and Hadi Hemmati
    IEEE Software, 2023
  7. Reachable Coverage: Estimating Saturation in Fuzzing
    Danushka Liyanage, Marcel Böhme, Chakkrit Tantithamthavorn, and Stephan Lipp
    In 45th IEEE/ACM 45th International Conference on Software Engineering, ICSE 2023, 2023
  8. What would You do? An Ethical AI Quiz
    Wei Teo, Ze Teoh, Dayang Abang Arabi, Morad Aboushadi, Khairenn Lai, Zhe Ng, Aastha Pant, Rashina Hoda, Chakkrit Tantithamthavorn, and Burak Turhan
    In 45th IEEE/ACM 45th International Conference on Software Engineering (Demo Track), ICSE 2023, 2023
  9. D-ACT: Towards Diff-Aware Code Transformation for Code Review Under a Time-Wise Evaluation
    Chanathip Pornprasit, Chakkrit Tantithamthavorn, Patanamon Thongtanunam, and Chunyang Chen
    In Proceedings of the International Conference on Software Analysis, Evolution and Reengineering (SANER), 2023

2022

  1. Search-based fairness testing for regression-based machine learning systems
    Anjana Perera, Aldeida Aleti, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Burak Turhan, Lisa Kuhn, and Katie Walker
    Empir. Softw. Eng., 2022
  2. An Empirical Study of Model-Agnostic Techniques for Defect Prediction Models
    Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Hoa Khanh Dam, and John C. Grundy
    IEEE Trans. Software Eng., 2022
  3. Predicting Defective Lines Using a Model-Agnostic Technique
    Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Hideaki Hata, and Kenichi Matsumoto
    IEEE Trans. Software Eng., 2022
  4. SQAPlanner: Generating Data-Informed Software Quality Improvement Plans
    Dilini Rajapaksha, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Christoph Bergmeir, John Grundy, and Wray L. Buntine
    IEEE Trans. Software Eng., 2022
  5. The Impact of Data Merging on the Interpretation of Cross-Project Just-In-Time Defect Models
    Dayi Lin, Chakkrit Tantithamthavorn, and Ahmed E. Hassan
    IEEE Trans. Software Eng., 2022
  6. AutoTransform: Automated Code Transformation to Support Modern Code Review Process
    Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamthavorn
    In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, 2022
  7. Explainable AI for Android Malware Detection: Towards Understanding Why the Models Perform So Well?
    Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu
    In IEEE 33rd International Symposium on Software Reliability Engineering, ISSRE 2022, Charlotte, NC, USA, October 31 - Nov. 3, 2022, 2022
  8. LineVul: A Transformer-based Line-Level Vulnerability Prediction
    Michael Fu, and Chakkrit Tantithamthavorn
    In 19th IEEE/ACM International Conference on Mining Software Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022, 2022
  9. CommentFinder: a simpler, faster, more accurate code review comments recommendation
    Yang Hong, Chakkrit Tantithamthavorn, Patanamon Thongtanunam, and Aldeida Aleti
    In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022, 2022
  10. VulRepair: a T5-based automated software vulnerability repair
    Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Q. Phung
    In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022, 2022
  11. Where Should I Look at? Recommending Lines that Reviewers Should Pay Attention To
    Yang Hong, Chakkrit Tantithamthavorn, and Patanamon Thongtanunam
    In IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022, 2022

2021

  1. Software Engineering in Australasia
    Sherlock A. Licorish, Christoph Treude, John C. Grundy, Kelly Blincoe, Stephen G. MacDonell, Chakkrit Tantithamthavorn, Li Li, and Jean-Guy Schneider
    ACM SIGSOFT Softw. Eng. Notes, 2021
  2. Actionable Analytics: Stop Telling Me What It Is; Please Tell Me What To Do
    Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, and John Grundy
    IEEE Softw., 2021
  3. The Impact of Correlated Metrics on the Interpretation of Defect Models
    Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Ahmed E. Hassan
    IEEE Trans. Software Eng., 2021
  4. Assessing the Students’ Understanding and their Mistakes in Code Review Checklists: An Experience Report of 1, 791 Code Review Checklist Questions from 394 Students
    Chun Yong Chong, Patanamon Thongtanunam, and Chakkrit Tantithamthavorn
    In 43rd IEEE/ACM International Conference on Software Engineering: Software Engineering Education and Training, ICSE (SEET) 2021, Madrid, Spain, May 25-28, 2021, 2021
  5. Explainable AI for Software Engineering
    Chakkrit Tantithamthavorn, and Jirayus Jiarpakdee
    In 36th IEEE/ACM International Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, 2021
  6. PyExplainer: Explaining the Predictions of Just-In-Time Defect Models
    Chanathip Pornprasit, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Michael Fu, and Patanamon Thongtanunam
    In 36th IEEE/ACM International Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, 2021
  7. JITLine: A Simpler, Better, Faster, Finer-grained Just-In-Time Defect Prediction
    Chanathip Pornprasit, and Chakkrit Tantithamthavorn
    In 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021, 2021
  8. Practitioners’ Perceptions of the Goals and Visual Explanations of Defect Prediction Models
    Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and John C. Grundy
    In 18th IEEE/ACM International Conference on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021, 2021

2020

  1. The impact of automated feature selection techniques on the interpretation of defect models
    Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude
    Empir. Softw. Eng., 2020
  2. The Impact of Class Rebalancing Techniques on the Performance and Interpretation of Defect Prediction Models
    Chakkrit Tantithamthavorn, Ahmed E. Hassan, and Kenichi Matsumoto
    IEEE Trans. Software Eng., 2020
  3. JITBot: An Explainable Just-In-Time Defect Prediction Bot
    Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, and Thanwadee Sunetnanta
    In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020, 2020
  4. Workload-aware reviewer recommendation using a multi-objective search-based approach
    Wisam Haitham Abbood Al-Zubaidi, Patanamon Thongtanunam, Hoa Khanh Dam, Chakkrit Tantithamthavorn, and Aditya Ghose
    In PROMISE ’20: 16th International Conference on Predictive Models and Data Analytics in Software Engineering, Virtual Event, USA, November 8-9, 2020, 2020

2019

  1. The Impact of Automated Parameter Optimization on Defect Prediction Models
    Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto
    IEEE Trans. Software Eng., 2019
  2. Mining software defects: should we consider affected releases?
    Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit Tantithamthavorn
    In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, 2019

2018

  1. Studying the dialogue between users and developers of free apps in the Google Play Store
    Safwat Hassan, Chakkrit Tantithamthavorn, Cor-Paul Bezemer, and Ahmed E. Hassan
    Empir. Softw. Eng., 2018
  2. The impact of IR-based classifier configuration on the performance and the effort of method-level bug localization
    Chakkrit Tantithamthavorn, Surafel Lemma Abebe, Ahmed E. Hassan, Akinori Ihara, and Kenichi Matsumoto
    Inf. Softw. Technol., 2018
  3. Studying the dialogue between users and developers of free apps in the google play store
    Safwat Hassan, Chakkrit Tantithamthavorn, Cor-Paul Bezemer, and Ahmed E. Hassan
    In Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018
  4. An experience report on defect modelling in practice: pitfalls and challenges
    Chakkrit Tantithamthavorn, and Ahmed E. Hassan
    In Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018
  5. AutoSpearman: Automatically Mitigating Correlated Software Metrics for Interpreting Defect Models
    Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude
    In 2018 IEEE International Conference on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018, 2018
  6. Artefact: An R Implementation of the AutoSpearman Function
    Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude
    In 2018 IEEE International Conference on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018, 2018

2017

  1. An Empirical Comparison of Model Validation Techniques for Defect Prediction Models
    Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto
    IEEE Trans. Software Eng., 2017

2016

  1. Comments on "Researcher Bias: The Use of Machine Learning in Software Defect Prediction"
    Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto
    IEEE Trans. Software Eng., 2016
  2. Automated parameter optimization of classification techniques for defect prediction models
    Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto
    In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, 2016
  3. Towards a better understanding of the impact of experimental components on defect prediction modelling
    Chakkrit Tantithamthavorn
    In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume, 2016
  4. A Study of Redundant Metrics in Defect Prediction Datasets
    Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Akinori Ihara, and Kenichi Matsumoto
    In 2016 IEEE International Symposium on Software Reliability Engineering Workshops, ISSRE Workshops 2016, Ottawa, ON, Canada, October 23-27, 2016, 2016

2015

  1. The Impact of Mislabelling on the Performance and Interpretation of Defect Prediction Models
    Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, Akinori Ihara, and Ken-ichi Matsumoto
    In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, 2015
  2. Who should review my code? A file location-based code-reviewer recommendation approach for Modern Code Review
    Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula, Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto
    In 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015, 2015

2014

  1. Impact Analysis of Granularity Levels on Feature Location Technique
    Chakkrit Tantithamthavorn, Akinori Ihara, Hideaki Hata, and Kenichi Matsumoto
    In Requirements Engineering - First Asia Pacific Requirements Engineering Symposium, APRES 2014, Auckland, New Zealand, April 28-29, 2014. Proceedings, 2014

2013

  1. Mining A change history to quickly identify bug locations : A case study of the Eclipse project
    Chakkrit Tantithamthavorn, Rattamont Teekavanich, Akinori Ihara, and Ken-ichi Matsumoto
    In IEEE 24th International Symposium on Software Reliability Engineering, ISSRE 2013, Pasadena, CA, USA, November 4-7, 2013 - Supplemental Proceedings, 2013
  2. Using Co-change Histories to Improve Bug Localization Performance
    Chakkrit Tantithamthavorn, Akinori Ihara, and Ken-ichi Matsumoto
    In 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2013, Honolulu, Hawaii, USA, 1-3 July, 2013, 2013