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Abstract. Software quality analytics is a statistical or machine learning
classifier that is trained to identify defect-prone software modules. The
goal of software quality analytics is to help software engineers prioritize
their software testing effort on the most risky modules and understand
past pitfalls that lead to defective code. While the adoption of software
quality analytics enables software organizations to distill actionable in-
sights, there are still many barriers to broad and successful adoption of
such analytics systems. Indeed, even if software organizations can ac-
cess such invaluable software artifacts and toolkits for data analytics,
researchers and practitioners often have little knowledge to properly de-
velop analytics systems. Thus, the correctness of the predictions and
the insights that are derived from analytics systems is one of the most
important challenges of data science in software engineering.
In this work, we conduct a series of empirical investigation to better un-
derstand the impact of experimental components (i.e., class mislabelling,
parameter optimization of classification techniques, and model validation
techniques) on the performance and interpretation of software quality an-
alytics. To accelerate the large amount of compute-intensive experiment,
we leverage the High-Performance-Computing (HPC) resources of Cen-
tre for Advanced Computing (CAC) from Queen’s University, Canada.
Through case studies of systems that span both proprietary and open-
source domains, we demonstrate that (1) class mislabelling does not im-
pact the precision of software quality analytics; (2) automated parameter
optimization for classification techniques substantially improve the per-
formance and stability of software quality analytics; and (3) the out-of-
sample bootstrap validation technique produces a good balance between
bias and variance of performance estimates. Our results lead us to con-
clude that the experimental components of analytics modelling impact
the predictions and associated insights that are derived from software
quality analytics. Empirical investigations on the impact of overlooked
experimental components are needed to derive practical guidelines for
analytics modelling.
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